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STRUCTURE OF SHOCK WAVES IN ELASTOPLASTIC
RELAXING MEDIA

V. G. Grigor'ev, A, S. Nemirov, UDC 534.222.2
and V, K. Sirotkin

At the present time shock and explosive loads are being more and more widely used in various technical
processes, Tn this case, an adequate description both of the process of the propagation of a shock wave and of
the change in the medium as a result of the shock action is of great importance.

Elastoplastic waves have been discussed earlier in a number of pieces of work [1-3], taking account of
the behavior of dislocations at the front of the shock wave. In [1] a model was developed for the description of
the inelastic behavior of iron and low-carbon steel in a wide range of change in the deformation rates, A solu-
tion is given to the problem of the plane collision of plates, In [2], along with a numerical solution of the prob~
lem of the porpagation of an elastoplastic wave, a stationary wave is discussed, I is shown that the front of
a shock wave has a multiwave structure. However, as an expression for the velocity of the dislocations the
authors of [2] used only an exponential dependence on the intensity of the tangential stresses and did not con~
sider the important case of a power dependence. In [3], on the basis of the dynamics of dislocations, the theory
of a fully established wave profile is discussed; numerically calculated profiles are compared with experi-
mental profiles, obtained by the methods of laser interferometry, It is shown that the velocity of the disloca~
tions with the shock-wave compression of aluminum is well described by a power dependence, In addition, it
is shown that for aluminum the density of mobile dislocations increases linearly with a rise in the value of the
plastic shear Y '

In the present article the question of the structure of the waves of the load in elastoplastic media is dis~
cussed; a dislocation model of the dynamic plasticity is used [4~6]. Within the framework of this model, it is
possible to describe not only the dynamics of the plastic deformation, but also to consider the structural changes
which take place in a material under the action of dynamic loads.

The analogous problem of the structure of a shock wave, using a phenomenological approach to a desecrip~-
tion of the relaxation of the tangential stresses, was discussed in [7]; however, in this article there was no
detailed discussion of the role of the nonlinearity of the process of the relaxation of the stresses, and effects
connected with the change in the density of the dislocations were not taken into consideration,

Let us consider a shock wave, whose width A is small in comparison with the curvature of the front and
the distance at which appreciable damping of the shock wave takes place. Inthis case, the structure of the
wave will be determined by the solution of the steady~state plane problem [8].

Going over to a moving system of coordinates in which the front is motionless, the equations of motion
can be written in the form [7]

pU = polig, Gy—0y1o = (Polte)*(1/p—1/pg), 1

where 0 is the density; u is the velocity; oy is the stress along the axis of propagation; 0, u,, 65, are the corre-
sponding values ahead of the front.

We shall consider not-too-strong shock waves, so that the temperature behind the front of the wave does
not exceed the melting temperature. In this case, the thermal components of the pressure can be neglected [8]
and the equation of state can be written in the form
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p = plp), p= — (o1 + 20,)/3, @)
where p is the pressure; 0, is the stress in a direction perpendicular to the direction of propagation of the wave.

In addition to the equation of state, in a solid body the connection between the tangential stresses 7 =0y~
0, and the deformations must also be given. As relationships determining the tangential stresses we take the
equations of the dislocation model of the dynamie plasticity [4~6] which, in our case, assume the form

Polty

7 nibg @ -
TZT;) = e T + !J])A‘ mV (‘L’), (3)

T 2Gp dx

where G is the elastic modulus; 4 is the modulus of the orientation tensor; b is the Burgers vector; Ny, is the
number of mobile dislocations per unit of surface; v(r) is the mean velocity of the dislocations under the action
of the tangential stress. The velocity of the dislocations v{r) depends on the temperature, However, for large
velocities, this dependence has been insufficiently well investigated [9] and will not be taken into consideration
in what follows.

The number of mobile dislocations Ny, varies during the process of plastic deformation, which is con-
nected both with the multiplication and the fixing of the dislocations, This change can be connected with the
absolute value of the plastic shear [6] Yp:

A .
E‘;_)'L_d}’_’ = ubN,, (vp) l v(t)], 4)

This relationship is important not only for determination of the profile of the wave, but also for predicting the
changes in the deformation properties of the material as the result of shock action.
The system of equations (1)-(4) can be solved with respect to the density P

(p2))? — (pauo)®dp pv (1)

0° (e — ) 7w = — BN (V) ooty )
: 3 -0 —0)-
= 3|7~ G 2] (@0 =0
dy, ~ {pe))? (o) dp ©)
T T () i

where cz=dp/dp; ¢ =c? +4G/3p are the volumetric and longitudinal velocities of sound, which, generally speak-
ing, depend on the density.

To determine the character of the solution of Eq. (5), let us examine the behavior of the coefficients of
this equation in the plane {p, uo}. Here we assume that the velocity of the dislocations v(r) reverts to zero
with 7 =0, and Ny, > 0, The lines determined by the equations

P = Poliglcy; | @)
p(o)—pout (1—5) =0, (8)

are lines at which the following conditions are satisfied: The coefficient with de/dx reverts to zero and the
right-hand part of Eq. (5) reverts to zero correspondingly.

These lines are shown schematically in Fig. 1, where curve 1 corresponds to the solution of Eq. (7).
Equation (8) has one trivial solution p=p,, and the second solution is shown in Fig. 1, curve 2, These lines

Fig. 2
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divide the plane {s, uo} into parts with different signs of the derivative dp/dx, The region of positive values
of dp/dx, corresponding to the waves of the load, is not hatched in Fig. 1.

As can be seen from Fig, 1, with c<uy<cy a continuous wave of the load can exist. With u,>cj, the
solutions must be sought in the class of discontinuous functions. It follows from Eq. (3) that the discontinuity
in the solution must be elastic, The conditions at the shock wave are given by the relationships

p%;_za, v==[p(0) - ooud (1 — 2],

which follow from the conditions that there is no plastic deformation at the elastic discontinuity. The line of
the elastic shock wave is shown in Fig, 1 by curve 3. It lies in the region of positive values of do/dx. Thus,
with uy> ¢7 the shock front consists of an elastic shock wave, behind which follows a relaxation part, With
the solution of Egs. (5) and (6), it must be taken into consideration that, at an elastic discontimity, v,=0. In
the relaxation part of the profile there is a further increase in the density, until it reaches a line determined
by Eq. (8), at which 7 =0. As follows from the condition T =0, this line corresponds to the hydrodynamic
Hugoniot adiabatic.

With ¢ <uy< e, continuous stationary waves can exist, To understand their physical meaning, let us ex-
amine () with p—pg: '
ﬂ@ = —ubN._ vit (9)
Uy 0o (c;_;_c._,) dz W m ( )7

3 T 9 o
T = '—‘-_,"(P"‘Po) (u5—c-).

(u% — 02) WbN
(c‘l2 —_ ué) uy
This solution corresponds to the case where the leading front of the wave departs to infinity (x--—~=), Under

these circumstances, a steady-state profile is formed, corresponding to the asymptotic t —«, In actuality, the
time required to attain the asymptotic is determined by the value of

Assuming that v{r)=or, withj small values of T we obtain p—p0=eAx, where A = —'.;f—oc o, (¢} — ¢2).

¢; -k ug) uppo (¢ — 2
las = 14 (e, — ug) = 21— ore ()
apbN . (uf —c2)

Thus, stationary shock waves can exist only with uy> ¢;. With uy=e;, the wave is found to be non-station-
ary and goes over to a steady-state asymptotic with t>>t,.

Let us examine the structure of the shock wave without taking account of the mobile dislocations with
N =const. In this case, the concrete form of the equation of state must be given. We take the equation of
state in the form

p = (p — po)c? (10)

? {s a constant. We shall also assume a constant longitudinal velocity of sound c;.

where ¢

In this case the conditions at the elastic discontinuity assume the form

15
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Behind the front of the wave of the load, relationships corresponding to the hydrodynamic adiabatic are satisfied:

on = Poud/c%, py = poc® (uitf/e? — 1). up = c/u,. a1

The structure of the front of the wave is conveniently investigaied in the dimensionless variables

E= HbNm (1 - ciﬂc.ll)xv ?) == P-Pga :l'o == Ugjey,

r=oley, T= —g-r;p\,c". (12)
Equation (5) in these variables assumes the form
B FE) v e\ L,
T R AR a3)

To determine the special characteristics of the behavior of 5' (¢), we calculate the second de_rivative: dsz/ de?
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As can be seen from this expression, the sign of the second derivative is determined by the sign of the expres-
sion standing in square brackets, and depends essentially on the behavior of the velocity of the dislocations
v{r). The experimental data on the dependence of the veloeity of the dislocations on the stress is generally
described by dependences of the form v~7% or v=vgexp(—7,/ |T]). The second dependence correctly repro-
duces the limiting velocity of the dislocations with large values of |7].

Let us examine first the dependence of the form v ~7", Substituting v'¢r)/v¢r)=n/r into (14), we obtain

~ ~ oy ~ P T2v
= =5 \#) [“ F 2B FEnT it (15)

At an elastic discontinuity p- =u? and the sign of d%/dt? is determined by the sign of the quantity

4(v2—1) — nv?

2(vi—1f)—n *

From these relationships it can be seen that the structure of the front of the wave depends essentially on the
degree of nonlinearity of 'ghe relaxation of the tangential stresses. With a weak nonlinearity, where n<2@2—1),
for strong shock waves (uj> u?) the second derivative is found to be posmve at the elastic discontinuity. We
note that, if n< 2, then u, > 1 and, for sufficiently weak shock waves (uo >u,) the second derivative is negative.
In the case of strong nonlinearity, where n> 2(¥2~1), the situation changes. If, in this case, the condition n> 2
is satisfied, then ue > 1 and the second derivative is positive only for rather weak shock waves (@y<u,). For
strong waves (E'O >1g), the second derivative near an elastic discontinuity is found to be negative. This kind of
behavior of the profile of the wave is connected with the sharp dependence of the velocity of the dislocations

on the tangentlal stresses, As follows from expression (13), maximal tangential stresses are attained at the
line p'= uOV which corresponds to curve 4 on Fig. 1, intersecting the line of the shock front at the point u1 =v,

Tt can be shown that the condition u1 <ug is always satlsfled As can be seen from expression (15), with -
u02V the sign of the second derivative is negative (since pe uov %) with any values of n, Therefore, in the depen-
dence on the velocity of the shock wave and the degree of nonlinearity of the relaxation of the tangential stresses,
the following characteristic profiles of the shock wave can be observed: a) a weak nonlinearity (a<2@?—1))
and weak waves (uo < uc) either an ordinary relaxation profile with a negative second derwatwe, shown qualitatively
in Fig. 2 (curve 1), or the profile shown by curve 2 in Fig. 2; b) a weak nonlinearity (n< 2(»* ~ 1)) and strong
waves (uo >u c) the profile shown qualitatively by curve 3 in Fig, 2; ¢) a strong non-linearity (n> 2(112—1))
and weak shock waves (u5<uc) the prof11e shown qualitatively by curve 3 in Fig. 2; d) a strong non-linearity
> 2(»*~1)) and strong shock waves (u >u, 2): the relaxation profile shown quahtatlvely by curve 1 in Fig. 2;
the presence of a point of inflection at the front of the shock wave in cases b) and c¢) has a different nature.
While in case b) it arises due to the kinematics, in case c¢) the point of inflection arises due to the development
of plastic flow, Therefore, only in case ¢) is it possible to identify it with the plastic wave described in [7].

(@B—ud)2(v—1—nl, ui=

Let us consider briefly the dei)endence v=vyexp (—7y/ |7]). Inthis case, in (15) we must substitute Negf =
7/I7]. At an elastic discontimity ney = 2t,/3pec? (v*—1) (i, — 1). AS can be seen from this expression, only
very weak waves @ o~ 1x1)willbe charactemzed by large values of nggg. For the remaining waves neff<1, since,
according to the experimental data, T,< pec?. From expression (15) it can be seen that the profile of waves
with ﬁ'o< 2 will have the form given in Fig, 2 (curve 1). This conclusion is confirmed by a numerical calcula-~
tion., Figure 3a shows profiles of waves obtained by the numerical lntegratlon of Eq. (13) for the following
values of the parameters: ¥2=1.7, Ty/pyc?=2-10"3, iy, =1.001, Uy, =1.05, Uyg=1.1, curves 1-3, respectively.

Let us evaluate the width of the shock front. Using Eq. (13) and taking into consideration that v<i, vial,
and U, ~1, we obtain

Aty ~ 1. : (16)
Thus, going over to dimensional values, and taking phNy, ~1 em~! we obtain A ~1 em,

Let us examine the structure of the wave with a varying value of Np,. During the process of plastic de-
formation, there is a change in the density of the mobile dislocations, which manifests itself as deformation
hardening. This effect is taken into consideration in Eq. (5), in which the density of the mobile dislocations
depends on the value of the plastic deformation. Using the equation of state (10) and solving Eq. (6), we obtain

1 ~p PE—p? 17
(ln———}- - O_T)T) a7

Vo (0) =
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Fig. 3

In this expression it is taken into account that, at an elastic discontinuity, there is no piastic deformation. A
simple form of Eq. (17) is generally taken near the elastic discontinuity, where (p _.Bg)/ge < 1,

s wl—1 . -
Y= vzv—__i'oz—zk"(P —ut)y (18)
0

here it is taken into consideration that 'Be=ﬁ'€, If the condition 1 — 1«1 is satisfied, then expression (18) is
valid at the whole front of the shock wave. We note that relationships (17) and (18) make it possible fo deter~
mine the maximal plastic deformation taking place in the front of the shock wave. Substituting relationship
(11) into expression (17), we obtain

max V2 1 -
.VP —vz_i[lnvz 2'u5 (1 v )]' (19)
if ¥2—1«1, then (19) gives Y28 =v2(1~u;"?), As can be seen from (19), the value of y '%X rises monotonically
with a rise in U, and v?, Expression (19) makes it possible to determine the density of the dislocations behind
the front of a shock wave with a known dependence N(Yp)-

To investigate the effect of a change in the density of the mobile dislocations on the structure of the
shock wave, we postulate that the density of the mobile dislocations is determined by the law [1, 4, 5]

Ny = "Vmo(1 + mVp)1 (20)

where m is a coefficient determining the change in the density of the dislocations, In the case m<0, this law
reflects a linear hardening of the material, and m > 0 a weakening, Using (20), Eq. (5) in dimensionless vari~
ables (12) assumes the form

& BT E)

dE 53 —7&8 170 ’
where £ =pb Ny f1— (¢%/c?)]x, and yp(;?) is given by expression (17), Multiplication of the dislocations leads to
the appearance of a distinct plastic front and to a decrease in the width of the front of the shock wave, Evalu-
ating the width of the front in a way analogous to that used in the derivation of (16), we obtain

AEs~ (1 + mypes)—t, {21)

From this it can be seen that taking account of the multiplication of the dislocations leads to a stronger depen~
dence of the width of the front on the velocity of the shock wave. The simplest form of expression (21) is taken
with ¥2—~1«< 1, where 1 +m'yll)nax ~1+mv?(1—u,"?). Inthis case, with m>1, we obtain

1 g
mvE ,}5 —1°

Afg ~
From this it can be seen that for weak shock waves (B3—1<1), the width of the front will depend greatly on
the power of the wave. With u3>1, this dependence becomes unreal,

The value of m is determined from experiments on plastic deformation and is found equal to ~ 16’ [1, 5,
6]. Substituting ¥2=2 into (19) and evaluating Afs using formula (21), we obtain Afs~ 1074 with m ~10° and
Afg~ 10~! with m ~ 102, This evaluation is confirmed by a numerical calculation, shown in Fig. 3b, ¢; the cal-
culations were made for the following values of the parameters: »2=1.7, T,/p,c?=2-1073, {if;=1.001, Uy, =1.05
Up3=1.1 (curves 1-3, respectively), m =10, and m=10° (Fig. 3b, ¢, respectively).

Using relationships (19), (20), the density of the dislocations behind the front of the shock wave can be
evaluated. A maximal value of the density is attained with strong shock waves (Ti%» 1) and is equal to Ny, =
N0[12+ml/21n(v2/v2—1)]. With v2~2, Ny ~10" em™?, and m ~10°, the maximal density of the dislocations is ~10!?
em” 4,
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Let us examine the asymptotic structure of a wave with uy= c¢; without taking account of the change in the
density of the mobile dislocations. As is shown by an analysis of the second derivative, given by expression
(14), it reverts to zero only at one point, Thus, with uy= cj, there should be one point of inflection at the front
of the wave. We note that, with a rise in the value of n (strong nonlinearity of the relaxation rate), this point
of Inflection approaches the point =uy, which corresponds to maximal tangential stresses, Thus, nonlinearity
of the relaxation rate leads to a situation in which the greatest curvature of the front of the wave is determined
by the point of a maximal relaxation rate,

The structure of the leading section of the front is determined by Eq. (9), which, in dimensionless vari-
ables (12) for v(t) =at? assumes the form

da @ (';%vz . 1)71 ("‘)-__ Nk e (S_ )"

—_— — - - — == U, TRE——TTT, 22)
dg (uo - 1) Uy (P - uo) ( 0) (P - uo) (
where o = a(3p,c?/2)"/c,. As canbe seen, the character of the rise in the stresses depends on the value of n,
In addition, the structure of the leading section will differ with ug=1 and ug 1.

The structure of the rear part is determined by Eq. (13) with #"~ufv? which, for v(r)=ar" assumes the
form
3 (3w — 1)

= (ugv2 — )" == B(u,) (ufv* — o)™

2 2(n—4) 7 2n—5
(v:—1)wv g

9
cﬁ?l-o l

The relaxation of the density to the hydrostatic value behind the front of the wave depends essentially on the
value of n. We note that the value uy =1 is not isolated with a consideration of the structure of the rear section
of the front, o

Let us first consider the case ﬁ'o= 1 @y=cy). The solution of Eq. (22) with n<2 will have the form p—1=
[@~n)A1)¢]Y/ @-1); the front of such a wave has a finite extension, With n.<1, the leading front will be a weak
discontinuity. Here, for n<1 (this case is obviously not realized in practice, since it corresponds to an in-
crease in the relaxationtime with a rise in the tangential stresses), the derivative at the leading front reverts
to infinity. th n=2, the solution of Eq. (22) will have the form p”—1=exp{A(1)§} and, with n> 2, p—1=
[(2—n)A (1)1 (0-2), Thus, with a sufficiently strong nonlinearity (n=2), a wave moving with the velocity uy=
cj becomes a running wave and asymptotically approaches a form where the rise at the leading front takes
place exponentially (n=2) or according to a power law (n> 2).

For ﬁ'o< 1, the structure of the leading section with n< 1 will be given by the relationship p—-1=[tQ—~
n)A (ﬁ'o)/ (1—ﬁ'0)]1/ (-n ; in this case, the expansion of the wave remains finite. This is connected with the fact
that small stresses relax more rapidly and cannot depart from the large stresses. With n=1, the rise in the
density at the leading section has an exponential character p — 1 — exp {4(4))t/(1— ug)}. Under these circum-
stances, with a decrease in U, the value of £ (ily)/(1—1,) decreases and, at the limit &, ,=~1/v, reverts to zero, .
Withn > 1, the density in the leading section varies in accordance with a power law: p—1 =[(1~ n)A(Eo)E/(l - ﬁ'())]i/ (n-1),

Let us now examine the character of the rear section of the wave. With n<1, the density relaxes to its
hydrostatic value §'= ﬁ'ovz in a finite time, This is connected with the fact that small stresses relax more rapidly
than large. With n=1, the hydrostatic value is attained in an exponential manner: u2v*—p — exp[— B (u,) ],
and, with n> 1, according to a power law: wiv2 — p = [(n — 1) B (&) g] V"V,

We note that, for any given values of n, the leading section of the wave with ﬁ'o >1/v (a4 > c) is found to be
steeper than the rear section, and the profile of the wave is asymmetrical. With a decrease in U, this asym-
metry decreases and, at the limit of very weak waves (@,— 1/v), the profile of the wave becomes symmetrical.

Let us examine in more detail the structure of a weak wave, whose profile asymptotically approaches the
solution of Eq, (13) with Tln—’l/v (1y—c). Expanding this equation near the point p'=1 and taking into account
that Uy — 1, we obtain :

) e

With n=1, the solution of this equation has the form
p = = ((udv* + 1) + (ufv* — 1) th CE},

where C=a¥3@32—-1)/(w?~1). This solution is well known from problems of nonlinear acoustics [10]. With
n> 1, the profile of the wave remains symmetrical, but the dependence of the curvature of the front of the

122



velocity of the wave becomes sharper: dp/dE|max ~ (ufv —1)". We note that, for a weak wave, taking account
of the change in the density of the mobile dislocations gives corrections of the following order of smallness with
respect to o'f%vz—l).

The authors thank R. I, Nigmatulin and N. N, Kholin for their evaluation of the results and their valuable
advice.
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INSTABILITY OF A SPHERICAL BODY
UNDER UNIFORM LOADING

M. N, Kirsanov and A, N, Sporykhin UDC 539,374

Proceeding from the three-dimensional equations of stability theory in the dynamical formulation, the
stability of a sphere made out of a reinforced elastic —~viscous —plastic material is investigated under uniform
loading. The subcritical strains are small. Tt is shown that the results obtained from approximate and three~
dimensional theories for elastic—plastic stability problems differ qualitatively and quantitatively in practice.
A similar problem has been discussed earlier in [1] in a static formulation on the basis of an approximate ap~
proach and the relationships of the theory of small elastic —plastic strains.

The axisymmetric elastic—plastic state of a spherical body of radii r; and r, subject to the action of an
internal pressure q is determined by the relation_ships‘

0 4k, o r 1 1

o ==ty [" -2+ e’ (“ors - )}
po 4k r 1

B =gt [ L s e +25)]
e 1

O'ro = 4]f0y3 (1 -— ?3-) 0'80 = 4kOY3 (1 + 213)’

o= rlrg_'.
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