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At the p r e se n t  t ime  shock and explos ive  loads a re  being m o r e  and m o r e  widely used in var ious  technical  
p r o c e s s e s .  In this case ,  an adequate desc r ip t ion  both of the p r o c e s s  of the p ropaga t ion  of a shock wave and of 
the change in the med ium as a resu l t  of the shock act ion is of g rea t  impor tance .  

E las toplas t ic  waves  have been d i scussed  e a r l i e r  in a number  of p ieces  of work  [1-3], taking account of 
the behav ior  of d is locat ions  at the f ront  of the shock wave.  In [1] a mode l  was developed for  the descr ip t ion  of 
the inelast ic  behav io r  of i ron  and l o w - c a r b o n  s tee l  in a wide range of change in the de fo rmat ion  ra t e s .  A solu-  
t ion is g iven to the p rob l em  of the plane co l l i s ion  of p la tes .  In [2], along with a numer i ca l  solution of the p r o b -  
l em of the porpaga t ion  of an e las top las t ic  wave,  a s t a t ionary  wave is d i scussed .  It is shown that  the front  of 
a shock wave has a mul t iwave s t ruc tu r e .  However ,  as an exp re s s ion  fo r  the veloci ty  of the dis locat ions the 
authors  of [2] used only an exponential  dependence on the intensi ty of the tangent ia l  s t r e s s e s  and did not con-  
s ide r  the impor tan t  case  of a power  dependence.  In [3], on the bas i s  of the dynamics  of d is locat ions ,  the theory  
of a fully es tab l i shed  wave prof i le  is d iscussed;  numer i ca l l y  ca lcula ted  p rof i l es  a re  c o m p a r e d  with ex p e r i -  
men ta l  p ro f i l e s ,  obtained by the methods of l a s e r  i n t e r f e r o m e t r y ,  it is shown that the veloci ty of the d i s loca-  
t ions with the shock-wave  c o m p r e s s i o n  of a luminum is well  desc r ibed  by a power  dependence.  In addition, it 
is shown that  for  a luminum the density of mobi le  d is locat ions  i n c r e a s e s  l inear ly  with a r i se  in the value of the 
p las t ic  s h e a r  ~,p. 

In the p r e s e n t  a r t i c le  the question of the s t ruc tu re  of the waves  of the load in e las top las t i c  m e d i a  is d i s -  
cussed;  a d is locat ion model  of the dynamic p las t ic i ty  is used [4-6].  Within the f r a m e w o r k  of this model ,  i t  is 
poss ib le  to desc r ibe  not only the dynamics  of the p las t ic  deformat ion ,  but a l so  to cons ide r  the s t r uc tu r a l ch an g es  
which take p lace  in a m a t e r i a l  under  the act ion of dynamic loads.  

The analogous p rob lem of the s t ruc tu re  of a shock wave,  using a phenomenologica l  approach  to a d e s c r i p -  
t ion of the re laxa t ion  of the tangential  s t r e s s e s ,  was d iscussed  in [7]; however ,  in this a r t i c l e  the re  was no 
detai led d i scuss ion  of the ro le  of the nonl inear i ty  of the p r o c e s s  of the re laxa t ion  of the s t r e s s e s ,  and effects  
connected with the change in the densi ty of the dis locat ions  were  net t aken  into cons idera t ion .  

Let  us cons ide r  a shock wave,  whose width & is smal l  in compar i son  with the cu rva tu re  of the front  and 
the dis tance at which apprec iab le  damping of the shock wave takes place .  In this  case ,  the s t ruc tu re  of the 
wave will be de te rmined  by the solution of the s t e ady - s t a t e  plane p rob lem [8]. 

Going ove r  to a moving s y s t em  of coordina tes  in which the front  is mot ion less ,  the equations of mot ion 
can  be wr i t t en  in the f o r m  [7] 

9~ ---- p0u0, c~1--r = (p0u0)~(t/p--l/p0), (1) 

where  p is the density;  u is the velocity;  cr 1 is the s t r e s s  along the axis of propagation;  P0, u0, r a re  the c o r r e -  
sponding values ahead of the front .  

We shall  cons ide r  no t - too - s t rong  shockwaves ,  so  that the t e m p e r a t u r e  behind the f ront  of the wave does 
not exceed the mel t ing  t e m p e r a t u r e ,  in this case ,  the t h e r m a l  components  of the p r e s s u r e  cm] be neglected [8] 
and the equation of s ta te  can  be wr i t ten  in the f o r m  
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P = PCP), P =  --  (zz 4- 2%)/3, (2) 

where  p is the p r e s s u r e ;  ~2 is the s t r e s s  in a d i rec t ion  pe rpend icu la r  to the d i rec t ion  of p ropaga t ion  of thewave .  

In addition to the equat ion of s ta te ,  in a solid body the connect ion between the tangent ia l  s t r e s s e s  +-=a 1 -  
a 2 and the deformat ions  m u s t  a lso  be given. As re la t ionships  de te rmin ing  the tangent ia l  s t r e s s e s  we take the 
equations of the d is locat ion model  of the dynamic p las t i c i ty  [4-6] which, in our  case ,  a s s u m e  the fo rm 

PoU.,+ do  9~u~ d~ 
dx "2G,o dx + FbN-+v ('r), (3) 

where  G is  the e las t ic  modulus ;  # is the modulus  of the or ienta t ion t ensor ;  b is the Burge r s  vector ;  N m is the 
number  of mobi le  dis locat ions  p e r  unit of sur face ;  vff)  is the m e a n  veloci ty  of the dis locat ions  under  the act ion 
of the tangent ia l  s t r e s s .  The veloci ty  of the d is locat ions  v{r) depends on the t e m p e r a t u r e .  However ,  for  l a rge  
ve loc i t ies ,  th is  dependence has been insuff icient ly well  inves t igated [9] and will not be taken into cons idera t ion  
in what fol lows.  

The number  of mobi le  d is locat ions  N m v a r i e s  during the p r o c e s s  of p l a s t i c  deformat ion,  which is con-  
nected both with the mul t ip l ica t ion  and the fixing of the d is locat ions .  This  change can  be connected with the 
absolute  Value of the p las t ic  shea r  [6] ?p: 

po.o dVv _ ~+bNm (?~)l v (+)1 (4) 
p dx 

This  re la t ionship  is impor tan t  not only fo r  de te rmina t ion  of the prof i le  of the wave,  but also for  predic t ing the 
changes in the de fo rma t ion  p r o p e r t i e s  of the m a t e r i a l  as the resu l t  of shock action.  

The s y s t e m  of equations (1)-(4) can  be solved with r e s p e c t  to the densi ty O 

++> +-+ .blu 

�9 +[ o-ooi  
= --f  p - (OoUoY -3-b-:-+ J ( ~ ~  = o ) ;  

d ~ p  (pct)+- - -  (pot,v) 2 d o (6 )  

where  c~=dp/dp;  c~ =c  2 +4G/3p a r e  the vo lumet r ic  and longitudinal veloci t ies  of sound, which, genera l ly  speak-  
ing, depend on the densi ty .  

To de t e rmine  the c h a r a c t e r  of the solution of Eq. (5), le t  us examine  the behav io r  of the coeff icients  of 
this equation in the plane {p, u0}. Here  we a s s u m e  that  the veloci ty  of the dis locat ions vff)  r e v e r t s  to ze ro  
with �9 = 0, and N m > 0. The l ines  de te rmined  by the equations 

p = 9ouolcl; (7) 

(,,>.-,% 

a re  l ines  at which the following condit ions a r e  sa t i s f ied:  The coeff ic ient  with dO/dx r e v e r t s  to ze ro  and the 
r ight -hand p a r t  of Eq. (5) r e v e r t s  to ze ro  cor responding ly .  

These  l ines a r e  shown schemat i ca l ly  in Fig. 1, where  cu rve  1 co r r e sponds  to the solution of Eq. (7). 
Equation (8) has  one t r iv i a l  solution p =Po, and the second solution is shown in Fig. 1, curve  2. These  l ines 
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divide the plane {p, u o} into par t s  with different signs of the derivative dp/dx. The region of positive values 
of dp/dx, corresponding to the waves of the load, is not hatched in Fig. 1. 

As can be seen f rom Fig. 1, with C<Uo<C / a continuous wave of the load can exist .  With Uo>C/, the 
solutions must  be sought in the c lass  of discontinuous functions. It follows f rom Eq. (3) that  the discontinuity 
in the solution must  be elast ic.  The conditions at the shock wave are  given by the relat ionships 

P T ~ = - - 2 G '  * = 7 [ p  ( p ) -  p~ 

which follow f rom the conditions that there  is no plast ic deformation at the elast ic discontinuity. The line of 
the elast ic  shock wave is shown in Fig. 1 by curve 3. It l ies in the region of posit ive values of dp/dx. Thus, 
with u 0 > c l the shock front consis ts  of an elast ic  shock wave, behind which follows a relaxation part .  With 
the solution of Eqs.  (5) and (6), it mus t  be taken into considerat ion that, at an elast ic discontinuity, ,/p =0. In 
the relaxat ion pa r t  of the profi le  there  is a fur ther  increase  in the density, until it reaches  a line de~ermined 
by Eq. (8), at which r =0. As follows f rom the condition z =0, this line cor responds  to the hydrodyr~nmic 
Hugoniot adiabatic.  

With c <u0< el, continuous s ta t ionary waves can exist. To understand thei r  physical  meaning, let  us ex-  
amine ga) with P--Po: 

c~ - -~ ,~  dp  p, bNmv(,~) ' ~9) 
UO 

( 4  - o " )  

3 " ") 
= - T ( P  - t,o) - 

3 : o , )  ,b v= po ( d  - Assuming that v(r) =oer, with small  values of r we obtain p - p 0  = e Ax, where A = ~ , 2 
, - ( ,-u0)uo 

This solution cor responds  to the case  where the leading front of the wave depar ts  to infinity (x-~ - ~ ) .  Under 
these c i r cums tances ,  a s teady-s ta te  profi le  is formed,  corresponding to the asymptotic  t - ~ %  In actuality, the 
t ime required to at tain the asymptotic  is determined by the value of 

= t / A  (c,  - -  u0) = 3 

Thus, s ta t ionary shock waves can exist  only with u 0 > c l . With u0-<cl, the wave is found to be non-sta t ion-  
a ry  and goes over  to a s teady-s ta te  asymptotic  with t>>tas. 

Let us examine the s t ruc ture  of the shock wave without taking account of the mobile dislocations with 
N m =const .  In this case ,  the concrete  form of the equation of state must  be given. We take the equation of 
state in the form 

p = (p _ po)c % (10) 

where c 2 is a constant.  We shall also assume a constant longitudinal velocity of sound c l. 

In this case  the conditions at the e las t ic  discontinuity assume the form 

l . ,e--~kuo--C'i) ,  u e --cL'u 0' Te 79oV, - -ce ) \ c7  t P e = P o ~ '  ~ -- p"c~r 2 '~ - _ 

Behind the front  of the wave of the load, relat ionships corresponding to the hydrodynamic adiabatic are  sat isf ied:  

Ph poU~/c '-, lob poc-(u, , ,  c- l ) .  u h c"-/u o. (11)  

The s t ruc ture  of the front of the wave is conveniently investigated in the dimensionless  variables  

= i.tbN,. (1 -- c"-,.c~)x, p = PPo, Uo = uo/c,, 
L, = v'cz, �9 = 3 r  pock. (12) 

Equation (5) in these var iables  assumes  the form 

. . . .  c;/c-. (13) p- - -  % % ~' /,  

To determine the special  cha rac te r i s t i c s  of the behavior  of ~(~), we calculate the second derivative d2~/d~ 2 
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..-' po: (14) 

_As can be seen from this expression, the sign of the second derivative is determined by the sign of the expres- 
sion standing in square  b racke t s ,  and depends essent ia l ly  on the behavior  of the velocity of the dislocations 
vff) .  The exper imenta l  data on the dependence of the velocity of the dislocations on the s t r e s s  is genera l ly  
descr ibed  by dependences of the fo rm  v ~ r  n or  v= voexp(-~'o/IV ])o The second dependence c o r r e c t l y  r e p r o -  
duces the l imiting veloci ty of the dis locat ions with la rge  values of IT I. 

Let  us examine f i r s t  the dependence of the fo rm v ~~.n Substituting v'  ff) /vff)=n/~" into (14), we obtain 

p- - 2 u  0 ] 
- ~  

d~ ~ ~ :  L" ~-T,~ + ~ ( ~ -  ,) ( p ~ , ' ~ )  �9 (15) 

2 ' ~  At an e las t ic  discontinuity ~ = u  2 and the sign of d p/d~ 2 is de termined  by the sign of the quantity 

( ~ 2  _ u 2 vo  ~ 4 ( ~ -  ~) - n~ c) [2 ( ~ -- l) -- n], u~ = "2-~:----~)-----ff 

F rom these  re la t ionships  it can be seen  that the s t ruc tu re  of the front  of the wave depends essent ia l ly  on the 
degree  of nonl inear i ty  of the re laxat ion of the tangential  s t r e s s e s .  With a weak nonlineari ty,  where  n< 2(v2-1),  
fo r  s trong shock waves (u02 > u2 c) the second der ivat ive  is found to be posi t ive at the elast ic  discontinuity. We 
note that,  if n < 2, then u c > 1 and, fo r  sufficiently weak shock waves (~0 >Uc) the second der ivat ive  is negative. 
In the case  of s t rong nonlineari ty,  where  n > 2(v 2 - 1 ) ,  the situation changes.  If, in this case ,  the condition n > 2 
is sat isf ied,  then u c > 1 and the second der ivat ive  is posi t ive only for  r a t h e r  weak shock waves (~0<Uc). For  
s trong waves (~0 > Uc), the second der ivat ive  near  an elast ic  discontinuity is found to be negative. This  kind of 
behavior  of the prof i le  of the wave is connected with the sharp dependence of the velocity of the dislocations 
on the tangential  s t r e s s e s .  As follows f rom expres s ion  (13), maximal  tangential  s t r e s s e s  a re  attained at the 
line ~=~0v, which co r r e sponds  to curve  4 on Fig. 1, in tersec t ing  the line of the shock front  at the point ~ = v .  
It can  be shown that  the condition u~ < u c is always sat isf ied.  As can be seen  f rom express ion  (15), with p 
Uo2V 2 the sign of the second der iva t ive  is negative (since ~ ~ v  2) with any values of n. There fo re ,  in the depen- 
dence on the veloci ty of the shock wave and the degree  of nonlineari ty of the re laxat ion of the tangential  s t r e s ses ,  
the following cha rac t e r i s t i c  prof i les  of the shock wave can be observed:  a) a weak nonl inear i ty  (n< 2(v2-1)) 
and weak waves (u] < u 2) : e i ther  an o rd inary  re laxat ion profi le  with a negative second der ivat ive ,  shown quali tat ively 
in Fig. 2 (curve 1), or  the prof i le  shown by curve  2 in Fig. 2; b) a weak nonlineari ty (n< 2(v 2 -  1 ) )ands t rong  
waves ~0~> U2c): the profi le  shown quali tat ively by curve  3 in Fig. 2; c) a s trong non- l inear i ty  (n> 2(v2=1)) 
and weak shock waves (~02<u2): the profi le  shown quali tat ively by curve  3 in Fig. 2; d) a s t rong non- l inear i ty  
(n> 2(v2-1)) and s t rong shock waves (~'2 > u2e): the re laxat ion p ro f i l e  shown quali tat ively by curve 1 in Fig. 2; 
the p r e s e n c e  of a point of inflection at the f ront  of the shock wave in cases  b) and c) has a different  nature .  
While in case  b) it a r i ses  due to the kinemat ics ,  in case  c) the point of inflection a r i s e s  due to the development  
of p las t ic  flow. There fore ,  only in case  c) is it poss ible  to identify it with the plastic wave descr ibed  in [7]. 

Let  us cons ider  br ief ly  the de{3endence v=v0ex  p (-~%/Ir  In this case ,  in (15) we must  substi tute neff = 
r  At an e las t ic  discontinuity neff = 2x0/3poc 2 (v~--l) ( u o -  t). As  can be seen f rom this express ion,  only 
very  weak waves (u*0- 1 <<1) wil lbe cha rac t e r i zed  by large  Values of n e f  f .  For  the remaining waves neff<< 1, since,  
according to the exper imenta l  data, T0<< P0e 2. F rom express ion  (15) it can be seen that the prof i le  of waves 
with U*o < 2 will have the fo rm given in Fig. 2 (curve 1). This  conclusion is conf i rmed by a numer ica l  ca lcula-  
tion. Figure 3a shows prof i les  of waves obtained by the numer ica l  integrat ion of Eq. (13) for  the following 
values of the p a r a m e t e r s :  v2=1.7, r "10 -a, ~01 =1.001, ~*02=1.05, ~'03=1.1, curves  1-3, respect ively .  

Let  us evaluate the width of the shock front .  Using Eq. (13) and taking into considera t ion that  ~< 1, v 2 ~1, 
and u'0 ~ 1, we obtain 

A~f ~ i .  (16) 

Thus,  going ove r  to dimensional  values,  and taking ttbN m ~1 cm -1, we obtain A ~1 era. 

Let us examine the s t ruc tu re  of the wave with a varying value of N m.  During the p rocess  of plast ic  de- 
formation,  the re  is a change in the density of the mobile dislocations,  which manifes ts  i tself  as deformat ion 
hardening.  This effect  is taken into considera t ion in Eq. (5), in which the density of the mobile  dislocations 
depends on the value of the plast ic deformat ion.  Using the equation of s tate  (10) and solving Eq. (6), we obtain 

~,o. ( I ~2 Pc-- ~) (17) 7 ~ ( P ) = ~  l n - = - + - ~ - u 0 ~  . 
Pe e 
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In this express ion  it is taken into account that, at an elast ic discontinuity, there  is no plast ic deformation.  A 
simple form of Eq. (17) is general ly  taken near  the elast ic  discontinuity, where ~'p --Pe)/Po << i, 

here i t  is taken into eonside~tion that ~e =u'B" If the eondttion p2 _ 1 << 1 is satisfied, then expression (18) is 
valid at the whole front of the shock wave. We note that relationships (17) and (18) make i t  possible to deter- 
mine the maximal  plast ic deformation taking place in the front  of the shock wave. Substituting relationship 
(11) into express ion  (17), we obtain 

~ - - t  inv 2 -  ( l - - v  -4) �9 (19) 

if Y2--1<<1, then (19) gives 32~n ax =u2(1--u0-~).  As can be seen f rom (19), the value of T p a x  r i ses  monotonically 
with a r i se  in u~ and u 2. Exp~;ession (19) makes it possible to determine the density of the dislocations behind 
the front of a shock wave with a known dependence N(~,p). 

To investigate the effect of a change in the density of the mobile dislocations on the s t ruc ture  of the 
shock wave, we postulate that the density of the mobile dislocations is determined by the law [1, 4, 5]: 

N,~ = N~0(l + mTp), (20) 

where m is a coefficient determining the change in the density of the dislocations.  In the case  m < 0, this law 
reflects  a l inear  hardening of the mater ia l ,  and m > 0 a weakening. Using (20), Eq. (5) in dimensionless va r i -  
ables (12) assumes  the fo rm 

_ ~, (t + ~vp) ~ (~) 
, 

where ~ =gbNm0[1-(c2/e~)]x,  and yp 0a~ is given by express ion  (17). Multiplication of the dislocations leads to 
the appearance of a dist ihct  plast ic front and to a decrease  in the width of the front of the shock wave. Evalu-  
ating the width of the front In a way analogous to that used in the derivat ion of (16), we obtain 

max~--I (21) A ~ . f ~ ( t + m ? p  ) . 

F rom this ir can  be seen that taking account of the multiplication of the dislocations leads to a s t ronger  depen- 
dence of the width of the front on the velocity of the shock wave. The s imples t  form of express ion  (21) is taken 
with v2-1<< 1, where 1 +my~ nax ~ 1 +mv2(1-Uo-2). In this ease,  with m>>l, we obtain 

~0 2 

From this it can  be seen that for  weak shock waves (u0-1<< 1), the width of the front will depend grea t ly  on 
the power  of the wave. With ~'~>>1, this dependence becomes unreal.  

The value of m is determined f rom experiments  on plast ic  deformation and is found equal to ~ 105 [1, 5, 
6]. Substituting v2=2 into (19) and evaluating A~f using formula  (21), we obtain A~f ~ 10 -4 with m ~10 s and 
A~f ~ 10 -1 with m ~ 10 ~. This evaluation is confirmed by a numer ica l  calculation, shown in Fig. 3b, c; the ca l -  
culations were  made for the following values of the p a r a m e t e r s :  v 2 = 1.7, v~p0 c2 = 2" 10 -3, u~01 = 1.001, u'02 = 1.05, 
u'03 = 1.1 (curves 1-3, respectively),  m = 102, and m = 10 ~ (Fig. 3b, c, respectively).  

Using relat ionships (19), (20), the density of the dislocations behind the front of the shock wave can be 
evaluated. A maximal  value of the density is attained with strong shock waves (~>>1) and is equal to Nm= 
N0[1 +mv21n(~,2/v2--1)]. With v 2 ~ 2, N O ~107 cm -2, and m ~10 s, the maximal  density of the dislocations is .~10 i2 
c m - 2 ,  
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Let  us examine  the asymptot ic  s t ruc tu re  of a wave with u 0 -  c l without taking account of the change in the 
density of the mobi le  d is locat ions .  As is shown by an analys is  of the second der iva t ive ,  g iven by expres s ion  
(14), i t  r e v e r t s  to ze ro  only at one point.  Thus,  with u0 -~ c l, the re  should be one point of inflection at the f ront  
of the wave.  We note that,  with a r i s e  in the value of n (s t rong nonl inear i ty  of the re laxa t ion  ra te) ,  this point 
of inflection approaches  the point 'p=~o v, which co r r e sponds  to max ima l  tangent ia l  s t r e s s e s .  Thus,  nonl inear i ty  
of the re laxa t ion  ra te  leads  to a s i tuat ion in which the g r e a t e s t  cu rva tu re  of the f ront  of the wave Is de te rmined  
by the point of a m a x i m a l  re laxa t ion  ra te .  

The s t r u c t u r e  of the leading sec t ion  of the front  is de te rmined  by Eq. (9), which, in d imens ion less  v a r i -  
ables  (12) fo r  v ( T ) = a v  n a s s u m e s  the f o r m  

(~v~--  l) n (~_  l),~ __ A (Uo) ( ~ -  t)~ (22) 

where  ~ = a(30oC2/2)'~/c~ As can  be seen,  the c h a r a c t e r  of the r i s e  in the s t r e s s e s  depends on the value of n. 
In addition, the s t r u c t u r e  of the leading sec t ion  will d i f fer  with u'0 = 1 and ~0< 1. 

The s t ruc tu re  of the r e a r  pa r t  is de te rmined  by Eq. (13) with ff-*u]v 2 which, for  e f t )  •orr n a s s u m e s  the 
f o r m  

The re laxa t ion  of the densi ty  to the hydros ta t ic  value behind the f ron t  of the wave depends essent ia l ly  on the 
value of n. We note that  the value ~0 = 1 is not i sola ted with a cons idera t ion  of the s t ruc tu re  of the r e a r  sec t ion  
of the front .  

Let  us f i r s t  cons i de r  the case  ~0=1 (u0=c/).  The solution of Eq. (22) with n< 2 will have the f o r m  ~ - 1 =  
[(2-n)A(1)~]l /(2-n);  the f ront  of such a wave has a finite extension.  With n~-<l,the leading front  will be a weak 
discontinuity.  Here ,  for  n< 1 (this ca se  is obviously not rea l ized  in p rac t i ce ,  s ince it co r r e sponds  to an in- 
c r e a s e  in the re laxa t ion  t ime  with a r i s e  in the tangential  s t r e s s e s ) ,  the der iva t ive  at the leading front  r e v e r t s  
to infinity. W~th n = 2 ,  the solution of Eq. (22) will have the f o r m  f f - l = e x p { A ( 1 ) ~ }  and, with n>  2, ~ - 1 =  
[(2-n)A(1)~]l /(n-2).  Thus,  with a sufficiently s t rong nonlineari ty  (n->2), a wave moving with the veloci ty u0= 
c l becomes  a running wave and asympto t ica l ly  approaches  a f o r m  where  the r i s e  at the leading front takes  
p lace  exponential ly (n = 2) o r  according  to a power  law (n > 2). 

Fo r  ~0 < 1, the s t ruc tu re  of the leading sec t ion  with n< 1 will be given by the re la t ionship  i f - 1  = [~ ( 1 -  
n)A ~0)/(1-~ '0)] l / ( i -n) ;  in this case ,  the expansion of the wave r ema ins  finite. This is connected with the fact  
that sma l l  s t r e s s e s  r e l ax  m o r e  rapidly  and cannot depar t  f r o m  the l a rge  s t r e s s e s .  With n= 1, the r i se  in the 
density at the leading sec t ion  has an exponential  c h a r a c t e r  ~ --  i = exp {A(~0)~/(l-- u0)}: Under these  c i r c u m -  
s tances ,  with a de c r ea s e  in u'0, the value of .~ (~'0)/(1-~0) d e c r e a s e s  and, a t the  l imi t  ~0~-* 1/v, r e v e r t s  to ze ro .  
With n > 1, the densi ty  in the leading sect ion v a r i e s  in accordance  with a power  law: p -  1 = [ (1 -  n)A(~0)~/(1- ~d)] 1/(n20. 

Let  us now examine  the c h a r a c t e r  of the r e a r  sec t ion  of the wave.  With n< 1, the densi ty  re laxes  to its 
hydros ta t i c  value ff=u'0 v2 in a finite t ime .  This  is connected with the fact  that  smal l  s t r e s s e s  re lax  m o r e  rapidly  
than  l a rge .  With n = l ,  the hydros ta t ic  value is at tained in an exponential  manne r :  5,~v~-- ~ : exp [ - -  B (u0) ~], 
and, with n > 1, according  to a power  law: -~ " - = - ! )  B ( 7 0 )  

We note that ,  for  any given va lues  of n, the leading sec t ion  of the wave with u'0 > 1Iv (u 0 > c) is found to be 
s t eepe r  than  the r e a r  sect ion,  and the prof i le  of the wave is a s y m m e t r i c a l .  With a dec r ea se  in ~'0 this a s y m -  
m e t r y  d e c r e a s e s  and, at the l imi t  of ve ry  weak waves  (u'0-* l/u), the prof i le  of the wave becomes  s y m m e t r i c a l .  

Let  us examine in m o r e  detai l  the s t ruc tu re  of a weak wave, whose prof i le  asympto t ica l ly  approaches  the 
solution of Eq. (13) with "5n'-*-l/v (u0--*c). Expanding this equation n e a r  the point ~= 1 and taking into account 
that ~'0v ~ 1, we obtain 

~Z~ 3 " ~  n ~ 2  2 
- ( p  - t )  - 

With n = l ,  the solution of this equation has  the fo rm 

t -,2~ t ) + ( ~ 0 ~  ~ t) thC~), = ~ {(~o~ § 

where  C =a"~vs(~2v2--1)/(v 2-1). This solution is well  known f rom p rob l ems  of nonl inear  acoust ics  [10]. With 
n > 1, the prof i le  of the wave r e m a i n s  s y m m e t r i c a l ,  but the dependence of the cu rva tu re  of the f ront  of the 
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velocity of the wave becomes sharper:  dpld~ [m,x N (u~ ~- -- t)". We note that, for a weak wave, taking account 
of the change in the density of the mobile dislocations gives correct ions of the following order  of smallness with 
respect to 

The authors thank R. I. Nlgmatulin and N. N. Kholin for  their  evaluation of the results and their  valuable 
advice. 
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INSTABILITY OF A SPHERICAL BODY 

UNDER UNIFORM LOADING 

M. N. K i r s a n o v  and A. N. Sporykhin  UDC 539,374 

Proceeding from the three-dimensional equations of stability theory in the dynamical formulation, the 
stability of a sphere made out of a reinforced e l a s t i c -v i scous -p l a s t i c  material  is investigated under uniform 
loading. The subcritical strains are  small.  It is shown that the results obtained from approximate and three-  
dimensional theories for e las t ic -p las t ic  stability problems differ qualitatively and quantitatively in practice.  
A s imilar  problem has been discussed ear l i e r  in [1] in a static formulation on the basis of an approximate ap- 
proach and the relationships of the theory of small e las t i c -p las t i c  strains.  

The axisymmetric e las t i c -p las t ic  state of a spherical body of radii r 1 and r 2 subject to the action of an 
internal p ressure  q is determined by the relationships 

- - 1  
~ = r l Y  2 . 
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